Abstract
The modeling of multi-scale and multi-physics complex systems typically involves the use of scientific software that can optimally leverage extreme scale computing. Despite major developments in recent years, these simulations continue to be computationally intensive and time consuming. Here we explore the use of AI to accelerate the modeling of complex systems at a fraction of the computational cost of classical methods, and present the first application of physics informed neural operators (NOs) (PINOs) to model 2D incompressible magnetohydrodynamics (MHD) simulations. Our AI models incorporate tensor Fourier NOs as their backbone, which we implemented with the TensorLY package. Our results indicate that PINOs can accurately capture the physics of MHD simulations that describe laminar flows with Reynolds numbers . We also explore the applicability of our AI surrogates for turbulent flows, and discuss a variety of methodologies that may be incorporated in future work to create AI models that provide a computationally efficient and high fidelity description of MHD simulations for a broad range of Reynolds numbers. The scientific software developed in this project is released with this manuscript.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.