Abstract
We show that the decaying magnetohydrodynamic turbulence leads to a more rapid growth of the correlation length of a primordial magnetic field than that caused by the expansion of the Universe. As an example, we consider the magnetic fields created during the electroweak phase transition. The expansion of the universe alone would yield a correlation length at the present epoch of 1 AU, whereas we find that the correlation length is likely of order 100 AU, and cannot possibly be longer than $10^4$ AU for non-helical fields. If the primordial field is strongly helical, the correlation length can be much larger, but we show that even in this case it cannot exceed 100 pc. All these estimates make it hard to believe that the observed galactic magnetic fields can result from the amplification of seed fields generated at the electroweak phase transition by the standard galactic dynamo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.