Abstract

This paper provides a comprehensive review of recent theoretical investigations concerning magnetohydrodynamic (MHD) waves in partially ionized solar plasma. First, we examine the properties of linear MHD waves in a uniform partially ionized plasma and discuss the relevant effects arising from partial ionization. Subsequently, we delve into MHD wave studies in the more intricate settings of the lower solar atmosphere and solar prominences. These investigations involve topics such as MHD waves in magnetic flux tubes, wave excitation, linear and nonlinear mode coupling and wave heating. We outline new challenges that future research should tackle. This article is part of the theme issue 'Partially ionized plasma of the solar atmosphere: recent advances and future pathways'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.