Abstract

An analytical investigation of two-dimensional heat transfer behavior of an axisymmetric incompressible dissipative viscous fluid flow in a circular pipe is considered. The flow is subjected to an externally applied uniform suction over the pipe wall in the transverse direction and a constant magnetic field opposite to the wall. The reduced Navier-Stokes equations in the cylindrical system are applied for the velocity and temperature fields. Constant wall temperature is considered as the thermal boundary condition. The velocity components are expressed into stream function and its solution is acquired by the Homotopy analysis method (HAM). The effects of magnetic body force parameter(M), suction Reynolds number (Re), Prandtl number (Pr)and Eckert number (Ec) on velocity and temperature are examined and are presented in a graphical frame. Streamlines, isotherms and pressure contours are likewise pictured. It is observed that with increasing suction Reynold number decelerates axial flow, whereas it enhances the radial flow. The temperature distribution increases with an increase in Prandtl number, whereas it decreases with an increase in Eckert number (viscous dissipation effect).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call