Abstract

The present research focuses on three-dimensional nonlinear convective flow of viscoelastic nanofluid. Here, the flow is generated due to stretching of a impermeable surface. The phenomenon of heat transport is analyzed by considering thermal radiation and prescribed heat flux condition. Nanofluid model comprises of Brownian motion and thermophoresis. An electrically conducting fluid is accounted due to consideration of an applied magnetic field. The dimensionless variables are introduced for the conversion of partial differential equations into sets of ordinary differential systems. The transformed expressions are explored through homotopic algorithm. Behavior of different dimensionless parameters on the non-dimensional velocities, temperature and concentration are scrutinized graphically. The values of skin friction coefficients, Nusselt and Sherwood numbers are also calculated and elaborated. It is visualized that the heat transfer rate increases with Prandtl number and radiation parameter is higher.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call