Abstract

Numerical studies have been performed to interpret the observed “shock overtaking magnetic cloud (MC)” event by a 2.5 dimensional magnetohydrodynamic (MHD) model in the heliospheric meridional plane. Results of an individual MC simulation show that the MC travels with a constant bulk flow speed. The MC is injected with a very strong inherent magnetic field over that in the ambient flow and expands rapidly in size initially. Consequently, the diameter of the MC increases in an asymptotic speed while its angular width contracts gradually. Meanwhile, simulations of MC‐shock interaction are also presented, in which both a typical MC and a strong fast shock emerge from the inner boundary and propagate along the heliospheric equator, separated by an appropriate interval. The results show that the shock first catches up with the preceding MC, then penetrates through the MC, and finally merges with the MC‐driven shock into a stronger compound shock. The morphologies of shock front in interplanetary space and MC body behave as a central concave and a smooth arc, respectively. The compression and rotation of the magnetic field serve as an efficient mechanism to cause a large geomagnetic storm. The MC is highly compressed by the overtaking shock. Contrarily, the transport time of the incidental shock influenced by the MC depends on the interval between their commencements. Maximum geoeffectiveness results from when the shock enters the core of preceding MC, which is also substantiated to some extent by a corresponding simplified analytic model. Quantified by the Dst index, the specific result is that the geoeffectiveness of an individual MC is largely enhanced with 80% increment in maximum by an incidental shock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.