Abstract

Magnetohydrodynamic natural convection boundary layer flow on a sphere with uniform heat flux in presence of heat generation has been investigated in this paper. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations is then solved numerically by two distinct efficient methods, namely (i) implicit finite difference method together with the Keller box scheme and (ii) perturbation or series solution technique. The results of the surface shear stress in terms of local skin friction and the rate of heat transfer in terms of local Nusselt number, velocity distribution as well as temperature distribution are shown graphically for a selection of parameter sets consisting of the heat generation parameter and the magnetic parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.