Abstract

Magnetohydrodynamic CuO-water nanofluid flow in a porous semi annulus with constant heat flux is studied by means of Control Volume based Finite Element Method. Koo-Kleinstreuer-Li correlation and Darcy model are applied for nanofluid and porous media, respectively. Effective parameters are radius of inner cylinder, CuO-water volume fraction, Hartmann and Rayleigh numbers for porous medium. A formula for Nuave is presented. Results revealed that heat transfer augmentation decreases with rise of buoyancy forces. Influence of adding nanoparticle augments with increase of Lorentz forces. Increasing Hartmann number leads to a reduction in temperature gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call