Abstract
Recent observations suggest late accretion, which is generally nonaxisymmetric, onto protoplanetary disks. We investigated nonaxisymmetric late accretion considering the effects of magnetic fields. Our model assumes a cloudlet encounter event at a few hundred astronomical units scale, where a magnetized gas clump (cloudlet) encounters a protoplanetary disk. We studied how the cloudlet size and the magnetic field strength affect the rotational velocity profile in the disk after the cloudlet encounter. The results show that a magnetic field can either decelerate or accelerate the rotational motion of the cloudlet material, primarily depending on the relative size of the cloudlet to the disk thickness. When the cloudlet size is comparable to or smaller than the disk thickness, magnetic fields only decelerate the rotation of the colliding cloudlet material. However, if the cloudlet size is larger than the disk thickness, the colliding cloudlet material can be super-Keplerian as a result of magnetic acceleration. We found that the vertical velocity shear of the cloudlet produces a magnetic tension force that increases the rotational velocity. The acceleration mechanism operates when the initial plasma β is β ≲ 2 × 101. Our study shows that magnetic fields modify the properties of spirals formed by tidal effects. These findings may be important for interpreting observations of late accretion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.