Abstract

AbstractResearch regarding the heat transit mechanism of magnetohydrodynamic hybrid nanoliquid flow over contrasting flow profiles is predominantly employed in transpiration, coolants, fiber coatings, heat exchangers, and so on. Owing to this, we intend to dissect the heat transport behavior of MHD hybrid nanofluid flow past a cone as well as a wedge. For the analysis, we take nonlinear radiation and viscous dissipation into consideration with 30% of ethylene glycol and water (or EGW) as base fluid with suspended copper oxide (CuO) and magnesium oxide (MgO) nanoparticles. The Runge‐Kutta method with the shooting technique is utilized to figure out the deduced nonlinear gotverning equations. The influence of the concerned different admissible parameters on similar distributions (cone and wedge) are graphically illustrated and interpreted accordingly via computed numerical values. It is worth noting that the heat transport rate is greater past the cone rather than the wedge. The presence of CuO and MgO hybrid nanoparticles increases the heat transfer rate of the EGW base fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.