Abstract

We have developed high-critical-temperature radio-frequency Super conducting QUantum Interference Devices (SQUIDs) with step-edge grain-boundary Josephson junctions and large flux focusers. These planar devices were fabricated from epitaxial YBa2Cu3O7 films and operated in the magnetometer and first-order gradiometer configurations while immersed in liquid nitrogen. At the temperature of 77K, we have attained a magnetic field resolution for the magnetometer better than 200 fT/Hz1/2 down to less than 1 Hz, i.e., over the low signal frequency range important for medical diagnostics. The results to date show a high promise for biomagnetic diagnostics. For the first time, we recorded the evoked responses from human brains using a high-temperature magnetometer and a first-order electronic gradiometer channel simultaneously. These results were obtained in a magnetically shielded room. An improvement in the magnetic field resolution by another order of magnitude is possible and probable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.