Abstract

AbstractCondition monitoring of train traction systems has become increasing crucial to train operators in terms of safety, reliability and availability. Current signatures governed by electric motor drives of train traction systems are physically valuable to represent the operating conditions of the train traction systems. However, the long train length, tough and complex system connections, critical measuring locations, high-voltage and heavy-current environment, etc. always impose great difficulties when installing wired condition monitors involving active current sensors (e.g. current transformers, Hall sensors, Rogowski coils, etc.) which are often accompanied with the need of power supplies and signal conditioners. In view of this, we have developed power supply-free, signal conditioner-free, surface mount-type magnetoelectric smart current sensors and integrated them with a 4-channel, 2.4 GHz wireless communication (transmitter and receiver) unit. Four pairs of sensors and wireless transmitters have been installed on electric cables associated with the four electric motor drives situated underneath the 2nd, 5th, 8th and 11th cabins of a 12-cabin mainline train running between Hong Kong and Shenzhen, China. A 4-channel wireless receiver has been housed in the driver cab to provide real-time, wireless monitoring of the current signatures of the four electric motor drives. In this paper, the development of the sensors and wireless communication unit is described, and the field installation and test results are presented.KeywordsElectric motor drivesmagnetoelectric smart current sensorstrain traction systemswireless communication unitwireless condition monitoring

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.