Abstract
This paper describes the fabrication and performance results of a magnetoelectric macro fiber composite (ME MFC). The magnetoelectric composite was fabricated by bonding a magnetostrictive layer to a piezoelectric layer using a novel approach of low temperature transient liquid phase (LTTLP) bonding. The composite was diced into 150 micron wide fibers and bonded to a custom designed copper flexible circuit using a spin coated low viscosity room temperature curing epoxy. ME MFC’s with varying ferrite thicknesses of 0.6mm and 0.5mm were fabricated and characterized for energy harvesting. The composite with 0.6mm ferrite thickness achieved an open circuit voltage of 101mV (ME voltage coefficient of 6740mV/cmOe) and peak power of 3.1nW across 356kΩ matching load at 264Hz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.