Abstract

Magnetoelectric (ME) composites that simultaneously exhibit ferroelectricity and ferromagnetism have recently gained significant attention as evident by the increasing number of publications. These research activities are direct results of the fact that multiferroic magnetoelectrics offer significant technological promise for multiple devices. Appropriate choice of phases with co-firing capability, magnetostriction and piezoelectric coefficient, such as Ni-PZT and NZFO-PZT, has resulted in fabrication of prototype components that promise transition. In this manuscript, we report the properties of Ni-PZT and NZFO-PZT composites in terms of ME voltage coefficients as a function of frequency and magnetic DC bias. In order to overcome the problem of toxicity of lead, we have conducted experiments with Pb-free piezoelectric compositions. Results are presented on the magnetoelectric performance of Ni-NKN, Ni-NBTBT and NZFO-NKN, NZFO-NBTBT systems illustrating their importance as an environmentally friendly alternative.

Highlights

  • The realization of a material with simultaneous presence of strong electric and magnetic order at room temperature, termedmultiferroics‘, would be a milestone for modern electronics and multifunctional materials

  • We report the properties of Ni-PZT and NZFO-PZT composites in terms of ME voltage coefficients as a function of frequency and magnetic DC bias

  • The lattice model with effective field approximation for long-range parts of the interatomic potentials can be used for description of the ferroelectric solid solutions

Read more

Summary

Introduction

The realization of a material with simultaneous presence of strong electric and magnetic order at room temperature, termedmultiferroics‘, would be a milestone for modern electronics and multifunctional materials. The understanding of the physical interaction occurring in the composites with multi-dimensional connectivity between the magneto-elastic stresses and elastoelectric fields has not been achieved The lack of this understanding has limited the ability to achieve the theoretical response of the material by coordinating the local electro-magnetic couplings, via coherent elastic interactions between phases. In these materials the theory predicts the size of the ME coefficient to be more than 5 V/cm.Oe. In order to understand the phenomenon of magnetoelectrics in composites comprised of individual piezoelectric and magnetostrictive phases, it will be important to develop theory and experiments that identify the effect of various physical and mechanical parameters on the magnitude of the magnetoelastic and elastoelectric coupling

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.