Abstract

The magnetoelectric effects of three-phase composites in 0-0-3 connectivity were investigated. The composites consist of particulate Terfenol-D and lead zirconate titanate blended in different polymer matrices. The magnetoelectric coefficient αq, which is the charge density change in response to a change in the applied magnetic field, of the samples was measured under short circuit condition. The results show that the αq of the samples with an electrolytic polymer matrix is larger than that of the samples with an insulating matrix, while samples with an ion-doped electrolytic polymer matrix exhibit the largest αq. These results conform with the expectation that higher matrix conductivity has an effect of enhancing the magnetoelectric signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.