Abstract

Multiferroic ceramic composites have been engineered to incorporate multiple desired physical properties within a single ceramic component. The objective of this study was to create such composites through pressure less sintering ferroelectric-doped PZT and nickel–zinc ferrite at a temperature of 1250 °C. The growth of ferrite grains was found to be influenced by the concentration of the ferroelectric PZT phase. Consequently, an increase in the ferrite content decreased the average particle size of nickel–zinc ferrite by a factor of 1.8. After impedance spectroscopy, the multiferroic ceramic composites can be categorized into two groups: those with low ferrite content (<20%) and those with a high ferrite content (>20%). Composites with a high ferrite content are suitable for dual-band filters or shield applications. The impedance spectroscopy analysis revealed that the resonance frequency can be shifted to higher frequency ranges. Therefore, it was demonstrated that modifying the composition of the multiferroic composite allows for tailoring the impedance behavior to shield living and working spaces against such radiation to meet the demands of the 21st century.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.