Abstract
In this work a magneto-elastic phase transition in a linear chain was obtained due the interplay between magnetism and lattice distortion in a double and super-exchange model. We consider a linear chain consisting of classical localized spins interacting with itinerant electrons. Due to the double exchange interaction, localized spins align ferromagnetically. This ferromagnetic tendency is expected to be frustrated by the anti-ferromagnetic super-exchange interaction between neighbor localized spins. Additionally, the lattice parameter is allowed to have small changes, which contributes harmonically to the energy of the system. The phase diagram is obtained as a function of the electron density and the super-exchange interaction using a Monte Carlo minimization. At low super-exchange interaction energy phase transition between electron-full ferromagnetic distorted and electron-empty anti-ferromagnetic undistorted phases occurs. In this case all electrons and lattice distortions were found within the ferromagnetic domain. For high super-exchange interaction energy, phase transition between two site distorted periodic arrangement of independent magnetic polarons ordered anti-ferromagnetically and the electron-empty anti-ferromagnetic undistorted phase was found. For this high interaction energy, Wigner crystallization, lattice distortion and charge distribution inside two-site polarons were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.