Abstract

One of the major challenges in wireless communication technologies is the antenna design. In this paper, a wideband flexible antenna made by covering a Kapton substrate with a flexible magnetodielectric polymer-based nanocomposite layer is proposed. This novel magnetodielectric polymer-based nanocomposite relies on carbon-coated cobalt (CCo) and is coated with a conjugated polymer, polyaniline (PANI). The nanocomposite (PANI/CCo) fabrication, whose morphology was studied via scanning electron microscopy, demonstrates a relative permeability, a dielectric permittivity, and a conductivity of 5.5, 4.3, and 7500 S/m, respectively. In this paper, two frequency bands are of interest [1.8–2.45 GHz (personal communication service and wireless local area network) and 5.15–5.825 GHz (wireless networks)]. The functioning of the antenna in free space and on body is numerically and experimentally investigated. The average specific absorption rate is also discussed. Thanks to its performance this magnetodielectric nanocomposite polymer (PANI/CCo) antenna has been found to be a good candidate for wearable applications where complex bending situations are encountered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call