Abstract

Magnetism and magnetocrystalline anisotropy (MCA) of 4d and 5d transition metal monolayers have been investigated in the presence of a Co(0001) substrate using first-principles electronic structure calculations. Magnetization of Co-group elements undergoes a transition from an in-plane to perpendicular MCA on Co(0001), whose energies (EMCA) are +0.75 meV/cell and +3.67 meV/cell for Rh/Co(0001) and Ir/Co(0001), respectively. On the other hand, the Fe-group Ru/Co(0001) and Os/Co(0001) exhibit the in-plane MCA with antiparallel spin moments to that of the Co substrate. From band analysis, enhancement of MCA in the Ir/Co(0001) is mainly due to the Ir atom by ⟨m=0|lx|m=±1⟩ matrix in the ↑↓-channel, where negative MCA found in Os/Co(0001) is due to Co with dominant contribution from ⟨m=0|lx|m=±1⟩ and ⟨m=±2|lx|m=±1⟩ matrices in the ↓↓- and ↑↓-channel, respectively. The significant enhancement of EMCA in Rh/ and Ir/ Co(0001) is ascribed to larger spin-orbit coupling of 4d and 5d orbitals, mainly by coupling between m = 0 and m = ±1 states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.