Abstract
Investigation of two-dimensional steady laminar magneto-convection heat transfer of (Ag,TiO2) water based nanofluids with variable properties inside a heat generating square enclosure having different thermal boundaries is done numerically in this paper. The governing equations are solved utilizing the finite volume method with power-law scheme and SIMPLE algorithm is used for handling the pressure-velocity coupling. The algorithm and the computer code have been also compared with numerical results in order to verify and validate the model. By using the developed fortran code, the effects of Hartmann number, heat generation (or absorption), Reyleigh number and solid volume fraction on the flow and thermal fields and heat transfer inside the enclosure are studied. Results are demonstrated in the form of streamlines, isotherms and average Nusselt number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.