Abstract

AbstractSmart manipulation of liquid/bubble transport has garnered widespread attention due to its potential applications in many fields. Designing a responsive surface has emerged as an effective strategy for achieving controllable transport of liquids/bubbles. However, it is still challenging to fabricate stable amphibious responsive surfaces that can be used for the smart manipulation of liquid in air and bubbles underwater. Here, amphibious slippery surfaces are fabricated using magnetically responsive soft poly(dimethylsiloxane) doped with iron powder and silicone oil. The slippery gel surface retains its magnetic responsiveness and demonstrates strong affinity for bubbles underwater but shows small and switching resistance forces with the water droplets in air and bubbles underwater, which is the key factor for achieving the controllable transport of liquids/bubbles. On the slippery gel surface, the sliding behaviors of water droplets and bubbles can be reversibly controlled by alternately applying/removing an external magnetic field. Notably, compared with slippery liquid‐infused porous surfaces, the slippery gel surface demonstrates outstanding stability, whether in air or underwater, even after 100 cycles of alternately applying/removing the magnetic field. This surface shows potential applications in gas/liquid microreactors, gas–liquid mixed fluid transportation, bubble/droplet manipulation, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.