Abstract

Magnetoconductivity oscillations and absolute negative conductivity induced by nonequilibrium populations of excited subbands in a degenerate multisubband two-dimensional electron system are studied theoretically. The displacement from equilibrium, which can be caused by resonant microwave excitation or by any other reason, is assumed to be such that electron distributions can no longer be described by a single Fermi level. In this case, in addition to the well-known conductivity peaks occurring at the Shubnikov-de Haas conditions and small peaks of normal intersubband scattering, sign-changing oscillations with a different shape are shown to be possible. We found also that even a small fraction of electrons transferred to the excited subband can lead to negative conductivity effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.