Abstract

Magnetoresistance of the correlated narrow-gap semiconductor FeSi was investigated by the radio frequency self-resonant spiral coil technique in magnetic fields up to 500T, which is supplied by an electromagnetic flux compression megagauss generator. Semiconductor-to-metal transition accomplishes around 270T observed as a sharp kink in the magnetoresistance, which implies the closing of the hybridization gap by the Zeeman shift of band edges. In the temperature-magnetic field phase diagram, the semiconductor-metal transition field is found to be almost independent of temperature, which is in contrast to a characteristic magnetic field associated with the hopping magnetoconduction in the in-gap localized states, exhibiting a notable temperature dependence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call