Abstract

The effect of a magnetic field on the equilibrium spectral and transport properties of a single-molecule junction is studied using the numerical renormalization group method. The molecule is described by the Anderson-Holstein model in which a single vibrational mode is coupled to the electron density. The effect of an applied magnetic field on the conductance in the Kondo regime is qualitatively different in the weak and strong electron-phonon coupling regimes. In the former case, the Kondo resonance is split and the conductance is strongly suppressed by a magnetic field $g mu_B B \gtrsim k_BT_K$, with $T_K$ the Kondo temperature. In the strong electron-phonon coupling regime a charge analog of the Kondo effect develops. In this case the Kondo resonance is not split by the field and the conductance in the Kondo regime is enhanced in a broad range of values of $B$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call