Abstract
The magnetocaloric effect in a two-dimensional Ising model is considered for different ratios between parameters of inter-site repulsion of nonmagnetic impurities and exchange coupling. Classical Monte Carlo simulations on a square lattice show that in case of weak coupling and at sufficiently high concentrations of nonmagnetic impurities the long-range ferromagnetic ordering breaks down to give isolated spin clusters in the ground state of the system. This leads to appearance of a paramagnetic response in the system at the zero temperature and nonzero entropy of the ground state. The feasibility to detect frustration of ground state using data on the magnetic entropy variation is discussed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.