Abstract

We present a mean-field study on the magnetocaloric effect (MCE) in RFe10X2, where X=Mo, V, and R=Gd, Tb, Ho, Tm, Dy, Er, Nd for X=V. For X=Mo, R=Dy, Gd, and Nd. The two-sublattice model, involving the 4f (rare earth) and 3d(Fe) sublattices, is used. For both systems, magnetization, magnetic heat capacity, magnetic entropy and isothermal entropy change ∆Sm are calculated for different magnetic fields in the 0-5T range and the temperature range from 0 to 700K. Direct and inverse MCEs are shown to take place in these ferromagnetic/ferrimagnetic compounds. For a field change ∆H=5T, the maximum isothermal magnetic entropy change has been calculated for ferromagnetic NdFe10Mo2 compound to be 6.6 J/K mol at Tc=441 K. Both direct, and inverse MCEs have been found in ferrimagnetic compounds, e.g., for TmFe10V2, with maximum -∆Sm= J/K mol at Tc=521K and ∆Sm= J/K mol at TN=127 K. Mean-field analysis is suitable for handling the systems we report on. Further study on the lattice and electronic contribution to entropy is planned.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call