Abstract

We have investigated magnetization (M), magnetocaloric effect (MCE), and magnetothermopower (MTEP) in polycrystalline Pr0.6Sr0.4MnO3, which shows a second-order paramagnetic to ferromagnetic transition near room temperature (TC = 305 K). However, field-cooled M(T) within the long range ferromagnetic state shows an abrupt decrease at TS = 86 K for μ0H < 3 T. The low temperature transition is first-order in nature as suggested by the hysteresis in M(T) and exothermic/endothermic peaks in differential thermal analysis for cooling and warming cycles. The anomaly at TS is attributed to a structural transition from orthorhombic to monoclinic phase. The magnetic entropy change (ΔSm = Sm(μ0 H)-Sm(0)) shows a negative peak at TC (normal MCE) and a positive spike (inverse MCE) at TS. ΔSm = −2.185 J/kg K (−3.416 J/kg K) with refrigeration capacity RC = 43.4 J/kg (103.324 J/kg) for field change of μ0ΔH = 1.5 T (3 T) at TC = 304 K is one of the largest values reported in manganites near room temperature. Thermopower (Q) is negative from 350 K to 20 K, which shows a rapid decrease at TC and a small cusp around TS in zero field. The MTEP [ΔQ/Q(0)] reaches a maximum value of 25% for μ0ΔH = 3 T around TC, which is much higher than 15% dc magnetoresistance for the same field change. A linear relation between MTEP and magnetoresistance and between ΔSm and ΔQ are found near TC. Further, ac magnetotransport in low dc magnetic fields (μ0 H ≤ 0.1 T), critical analysis of the paramagnetic to ferromagnetic transition, and scaling behavior of ΔSm versus a reduced temperature under different magnetic fields are also reported. Coexistence of large magnetic entropy change and magnetothermopower around room temperature makes this compound interesting for applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.