Abstract

•Magnetoactive phase transitional matter (MPTM) is made of NdFeB embedded liquid metal •MPTMs can reversibly switch between solid and liquid phase •MPTMs can solder electronic components and assemble parts in hard-to-reach space •MPTMs can remove foreign objects or deliver drugs in a model stomach Magnetically actuated miniature machines can perform multimodal locomotion and programmable deformations. However, they are either solid magnetic elastomers with limited morphological adaptability or liquid material systems with low mechanical strength. Here, we report magnetoactive phase transitional matter (MPTM) composed of magnetic neodymium-iron-boron microparticles embedded in liquid metal. MPTMs can reversibly switch between solid and liquid phase by heating with alternating magnetic field or through ambient cooling. In this way, they uniquely combine high mechanical strength (strength, 21.2 MPa; stiffness, 1.98 GPa), high load capacity (able to bear 30 kg), and fast locomotion speed (>1.5 m/s) in the solid phase with excellent morphological adaptability (elongation, splitting, and merging) in the liquid phase. We demonstrate the unique capabilities of MPTMs by showing their dynamic shape reconfigurability by realizing smart soldering machines and universal screws for smart assembly and machines for foreign body removal and drug delivery in a model stomach. Magnetically actuated miniature machines can perform multimodal locomotion and programmable deformations. However, they are either solid magnetic elastomers with limited morphological adaptability or liquid material systems with low mechanical strength. Here, we report magnetoactive phase transitional matter (MPTM) composed of magnetic neodymium-iron-boron microparticles embedded in liquid metal. MPTMs can reversibly switch between solid and liquid phase by heating with alternating magnetic field or through ambient cooling. In this way, they uniquely combine high mechanical strength (strength, 21.2 MPa; stiffness, 1.98 GPa), high load capacity (able to bear 30 kg), and fast locomotion speed (>1.5 m/s) in the solid phase with excellent morphological adaptability (elongation, splitting, and merging) in the liquid phase. We demonstrate the unique capabilities of MPTMs by showing their dynamic shape reconfigurability by realizing smart soldering machines and universal screws for smart assembly and machines for foreign body removal and drug delivery in a model stomach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call