Abstract

Aims. A new type of analysis of the narrowband dm-spikes in solar radio radiation is introduced to look for magnetoacoustic waves in their sources.Methods. The Fourier and wavelet methods were used. For the first time, the tadpole structures in the wavelet spectra of this radio emission were searched for.Results. Fifteen groups of the narrowband dm-spikes, observed during solar flares, were selected and analyzed by the Fourier and wavelet analysis methods. We found that the mean Fourier spectra of these spikes in frequency space are the powerlaws with a power-law index in the range −1.2 –−1.8. Furthermore, their wavelet spectra based on time series reveal tadpoles at some frequencies, which indicates the presence of magnetoacoustic waves. These waves are interpreted as propagating through a source of the narrowband dm-spikes. It is proposed that the spikes are generated by driven coalescence and fragmentation processes in turbulent reconnection outflow. This interpretation is supported by a simultaneous observation of drifting pulsating structures (DPSs) and spikes. Finally, modeling of the magnetoacoustic waves and tadpoles in the Harris current sheet supports this interpretation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.