Abstract

The magnetoacoustic heating of a plasma by harmonic or periodic saw-tooth perturbations at a transducer is theoretically studied. The planar fast and slow magnetosound waves are considered. The wave vector may form an arbitrary angle θ with the equilibrium straight magnetic strength. In view of variable θ and plasma-β, the description of magnetosound perturbations and relative magnetosound heating is fairly difficult. The scenario of heating depends not only on plasma-β and θ, but also on a balance between nonlinear attenuation at the shock front and inflow of energy into a system. Under some conditions, the average over the magnetosound period force of heating may tend to a positive or negative limit, or may tend to zero, or may remain constant when the distance from a transducer tends to infinity. Dynamics of temperature specifying heating differs in thermally stable and unstable cases and occurs unusually in the isentropically unstable flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call