Abstract

Hybrid excitations, called polaritons, emerge in systems with strong light-matter coupling. Usually, they dominate the linear and nonlinear optical properties with applications in quantum optics. Here, we show the crucial role of the electronic component of polaritons in the magneto-transport of a cavity-embedded 2D electron gas in the ultrastrong coupling regime. We show that the linear dc resistivity is significantly modified by the coupling to the cavity even without external irradiation. Our observations confirm recent predictions of vacuum-induced modification of the resistivity. Furthermore, photo-assisted transport in presence of a weak irradiation field at sub-THz frequencies highlights the different roles of localized and delocalized states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.