Abstract

The magneto-thermo-elastic interactions of a circular cylindrical shell immersed in applied magnetic and thermal fields are modeled and the shell’ nonlinear response and stability are investigated. The shell is made of a transversely isotropic, perfectly electroconductive non-ferromagnetic material. The shell’s deformation is characterized by small strains and moderately small rotations. A geometrically nonlinear, first-order transverse shear deformation shell model is developed and Galerkin’s method is used for spatial semi-discretization. The close connection between the static nonlinear response and the temperature-frequency interaction is explored to interpret the multi-solutions of the nonlinear response. Influence of prebuckling deformations on the buckling results is addressed and the significance of the applied magnetic fields on the response and stability is evaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.