Abstract
Composite material constituted by Fe micro-particles homogeneously dispersed in a silicone matrix, at a volume concentration slightly above the percolation threshold but separated by a thin silicone layer, was produced. The particle magnetic softness and their average size, have been properly improved with respect to previous investigations in order to maximize the piezo-resistive and the piezo-magnetic effects. The optimal combination of magneto-elasticity and piezo-resistivity enables to achieve a record value of magneto-piezo-resistivity sensitivity. An analytical model is proposed to simulate the theoretically expected behavior of electric resistance vs. the applied induction field gradient, so to predict the magneto-piezoresistive response and explain the obtained material tailoring. The experimental results have been in good agreement with the theoretically predicted behaviors, so validating the employed model and the interpretation of the phenomenon. A simple basic application in position sensing is also reported. The analytical model presented in this paper has demonstrated its potentiality to project further improvements, while the experimental results allow for different innovative applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.