Abstract

We studied ten-fold stacked layers of self-assembled InAs/GaAs quantum dots by photoluminescence in pulsed magnetic fields. When the interlayer distance is reduced from 9.8 to 5.5 nm , a doubling of the diamagnetic shift for a magnetic field perpendicular to the [0 0 1] direction reveals the onset of electron coupling between the dots in the stack. On reducing the interlayer distance to 3.1 nm , a lower exciton effective mass is seen in addition to the coupling. For such a close stacking, the strain field in and around the dot is completely different from that of a single-layered structure. In particular, the strain inside the InAs dots in the stack is partially relaxed, causing the observed effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.