Abstract

Metallic nanostructures supporting Localized Surface Plasmon Resonances (LSPR) are characterized by their unique ability to control and manipulate light at the nanoscale. Noble metal nanostructures, such as gold nanostructures, are demonstrating to exhibit magneto-optic activity in the presence of modulated magnetic field of low intensity in transversal configuration (T-MOKE). Validation of experimental findings was achieved by numerical simulations based on Finite Element Method (FEM) techniques. The developed numerical models allowed studying the combination of the T-MOKE effect with the localized surface plasmon resonance of metal nanoparticles. Numerical optical and magneto-optical spectra provided a deep insight on the physical aspects behind the magneto-optical activity of metal nanostructures strictly related to direction of oscillations electrical dipoles generated in resonance conditions. Additionally the MO signal was characterized as a transducing signal for refractive index sensing in liquid conditions. The outcome is an increase in the limit of detection of magneto optical transducer with respect to traditional plasmonic sensors. A new strategy for magneto-plasmonic sensing based on the use of glass supported -Au nanostructures based on their MO properties has put forward.

Highlights

  • Metallic nanostructures supporting Localized Surface Plasmon Resonances (LSPR) are characterized by their unique ability to control and manipulate light at the nanoscale

  • The sequence of images evidences the morphological evolution of the Au nanoparticles coverage due to the increase of the annealing time: after 1 minute, well developed nanoparticles form on the glass substrate and, as the annealing process proceeds, neighbouring nanoparticles tend to coalesce whereas isolated nanoparticles shrink, resulting in an average reduction of their diameter and in a likely increase of their height

  • We demonstrate here that a low intensity modulated magnetic field can be suitable to torque the oscillating electrical dipoles (Fig. 6) of noble metal NPs, generating a detectable MO effect in T-MOKE configuration

Read more

Summary

Introduction

Metallic nanostructures supporting Localized Surface Plasmon Resonances (LSPR) are characterized by their unique ability to control and manipulate light at the nanoscale Noble metal nanostructures, such as gold nanostructures, are demonstrating to exhibit magneto-optic activity in the presence of modulated magnetic field of low intensity in transversal configuration (T-MOKE). Pineider et al, demonstrated the existence magneto-plasmonic modes in gold nanoparticles dispersed in liquid solvents by magnetic circular dichroism (MCD) measurements[9] In this last case the authors attempted to use the effect for refractometric sensing by changing the refractive index of the solution. To the best of our knowledge, no experimental results are reported on T-MOKE characterization of glass supported -Au nanostructures, in particular when excited in Kretschmann configuration This choice presents the practical advantage to pursuit a better signal-to-noise ratio, an essential requirements for high resolution sensing signals. It is ideal for real time sensing applications, avoiding troubling interferences of light beam with analytes and buffer water solutions

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.