Abstract
Hydrothermal synthesis was used to obtain lamellar magnetic particles of barium hexaferrite, and colloidal solutions were prepared on their basis. Magneto-optical effects in colloid solutions of barium hexaferrite were examined. It was found that the aqueous colloidal solution of coarse planar particles of barium hexaferrite is a magneto-optical medium that is nearly two orders of magnitude more effective than the colloid formed from isometric cobalt ferrite particles. It was shown that measuring the frequency dependence of the magneto-optical effects and approximating the experimental data with the Debye function makes it possible to find the frequency f0 characteristic of the given colloid and to calculate the characteristic size of particles (or aggregates) creating the optical anisotropy in the colloid under the action of a magnetic field. A dichroism is observed in the aqueous colloid formed by coarse planar barium hexaferrite particles. This phenomenon is due to the change in the light scattering on coarse particles upon their orientation by a magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.