Abstract

The orbital Hall effect has been theoretically predicted but its direct observation is a challenge. Here, we report the magneto-optical detection of current-induced orbital accumulation at the surface of a light 3d transition metal, Cr. The orbital polarization is in-plane, transverse to the current direction, and scales linearly with current density, consistent with the orbital Hall effect. Comparing the thickness-dependent magneto-optical measurements with abinitio calculations, we estimate an orbital diffusion length in Cr of 6.6±0.6 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.