Abstract
The cross-sectiondesign of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\cos (\theta)$</tex-math></inline-formula> superconducting magnets is historically developed in a two-step process: initially, the coil geometry is defined on the basis of magnetic optimizations; then, the structure is designed around the coil. The first step searches for the best coil cross-section maximizing the magnetic field, margin, field quality and conductor efficiency. The latter step aims at limiting the coil stresses and deformations. However, the coil design, defined with the initial magnetic optimization, can influence the mechanical behaviour of the magnet, altering, for example, the peak stress during operation. As the critical current is a function of the applied strain, the mechanical implications of the coil cross-section design can limit the achievable performance. In this paper we propose an integrated optimization process that targets the peak stress on the conductor in addition to the magnetic objectives. The results are presented for a sample high-field Nb <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$_{3}$</tex-math></inline-formula> Sn dipole: a 4-layer design aiming at ultimate conductor performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.