Abstract

Ferromagnetic shape memory alloys (MSMA) exhibit magnetic field- and stress-induced twinning when processed into single crystals, but are brittle and difficult to shape. Embedding slender single crystalline MSMA elements into a polymer matrix can thus provide composites with adjustable magnetic strain actuation behavior. Ni–Mn–Ga single crystalline rods were characterized for their magneto-mechanical behavior and embedded in two different types of epoxy matrices with different volumetric fractions. The magnetic actuation of the composites was measured and shown to depend on the Ni–Mn–Ga volumetric fraction and the matrix stiffness. This behavior was well predicted by finite element simulations of the composite using a simple material model for the strain of the MSMA as a function of the magnetic field and applied stresses. Guidelines for composite behavior prediction could thus be proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.