Abstract

HypothesisThe magneto-mechanical actuation (MMA) of magnetic nanoparticles with a low-frequency alternating magnetic field (AMF) can be used to destroy cancer cells. So far, MMA was tested on different cells using different nanoparticles and different field characteristics, which makes comparisons and any generalizations about the results of MMA difficult. In this paper we propose the use of giant unilamellar vesicles (GUVs) as a simple model system to study the effect of MMA on a closed lipid bilayer membrane, i.e., a basic building block of any cell. ExperimentsThe GUVs were exposed to barium-hexaferrite nanoplatelets (NPLs, ~50 nm wide and 3 nm thick) with unique magnetic properties dominated by a permanent magnetic moment that is perpendicular to the platelet, at different concentrations (1–50 µg/mL) and pH values (4.2–7.4) of the aqueous suspension. The GUVs were observed with an optical microscope while being exposed to a uniaxial AMF (3–100 Hz, 2.2–10.6 mT). FindingsWhen the NPLs were electrostatically attached to the GUV membranes, the MMA induced cyclic fluctuations of the GUVs’ shape corresponding to the AMF frequency at the low NPL concentration (1 µm/mL), whereas the GUVs were bursting at the higher concentration (10 µg/mL). Theoretical considerations suggested that the bursting of the GUVs is a consequence of the local action of an assembly of several NPLs, rather than a collective effect of all the absorbed NPLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.