Abstract
The effect of a transverse magnetic field on the squeeze film behaviors between two parallel annular disks lubricated within an electrically conducting fluid is studied. The modified Reynolds equation governing the squeeze film pressure is derived by using the continuity equation and the magneto‐hydrodynamic (MHD) motion equations. According to the results obtained, the influence of magnetic fields signifies an enhancement in the squeeze film pressure. On the whole, the magnetic field effect characterized by the Hartmann number provides an increase in value of the load‐carrying capacity and the response time as compared to the classical non‐conducting lubricant case. It improves the MHD squeeze film characteristics of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.