Abstract

In this study, quaternary Heusler alloys CoFeCrZ (Z = Si, As, Sb) were investigated based on the modified Becke–Johnson exchange potential. The electronic structures demonstrated that CoFeCrZ (Z = Si, As, Sb) alloys are completely spin polarized with indirect bandgap and has an integer magnetic moment according to the Slater–Pauling rule. Pugh's and Poisson's ratios showed that these materials are highly ductile with high melting temperatures. The thermal properties comprising the thermal expansion coefficient, heat capacity, and Grüneisen parameter were evaluated at various pressures from 0 to 20 GPa. The Grüneisen parameter values indicated the strong anharmonicity of the lattice vibrations that predominated in these compounds. We also studied the dependency of the thermoelectric transport properties on the temperature, i.e., the thermal conductivity and Seebeck coefficient. These alloys exhibited low lattice thermal conductivity and good Seebeck coefficients at room temperature. The half-metallic structures of these compounds with large band gaps and adequate Seebeck coefficients mean that they are suitable for use in spintronic and thermoelectric device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.