Abstract
A new magneto-elastoplastic coupling model for ferromagnetic materials is proposed using the equivalent field method. In the proposed model, the components of the equivalent field due to the applied magnetic field, applied stress, and plastic deformation are considered based on the energy theory. Through detailed comparison with the existing models, the proposed model in this paper can more accurately describe the basic nonlinear change of magnetostrictive strain and magnetization under the applied stress and magnetic field revealed by existing experiments. In addition, the effects of applied stress, magnetic field and plastic deformation on the magnetostriction and magnetization of ferromagnetic materials are analyzed based on the proposed theory. In conclusion, the proposed model can more accurately describe the effect of stress on the magentostrictive strain and magnetization, the effects of the applied stress and magnetic field on the magnetic permeability, and the effect of plastic deformation on magnetomechanical characteristics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.