Abstract

Numerical simulations are performed for the two-dimensional magneto-convective transport of Cu–H2O nanofluid in a vertical lid-driven square cavity in the presence of a heat-conducting and rotating circular cylinder. The left wall of the cavity is allowed to translate at a constant velocity in the vertically upward direction. Both left and right walls are maintained at isothermal but different temperatures. The top and bottom walls of the enclosure are thermally insulated. At the central region of the cavity is a heat-conducting circular cylinder which can rotate either clockwise or counterclockwise. A constant horizontal magnetic field of amplitude B0 is applied perpendicular to the vertical walls. The nanofluid is electrically conducting, while the solid walls are considered electrically insulated. Simulations are performed for various controlling parameters, such as Richardson number (0.01 ≤ Ri ≤ 10), Hartmann number (0 ≤ Ha ≤ 50), dimensionless rotational speed of the cylinder (Ω = ±1), and nanoparticle concentration (0 ≤ ϕ ≤ 0.3), while Reynolds number based on lid velocity is fixed at a specific value (Re = 100). The flow and thermal fields are found to be susceptible to changes in the magnetic field and mixed convective strength, as well as nanoparticle concentration. However, the direction of cylinder rotation is observed to have little or no influence quantitatively on global hydrodynamic and thermal parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.