Abstract

We have studied magneto-conductive and magnetic properties of La1-xSrxMnO3 (LSMO) thin films on a-SiO2 substrates produced by the metal organic decomposition (MOD) method. LSMO thin films for x = 0, 0.15 and 0.3 have been produced in a pure O2 gas atmosphere. Although LaMnO3 (LMO) single crystal is an antiferromagnetic insulator (AFI), LMO thin films we have produced show ferromagnetic metal (FM) properties for suitable heat treatment conditions. We consider that the excess of O2- ions in LMO thin films produced in a pure O2 gas atmosphere induces the strong hole self-doping into those and the LMO thin films change from AFI to FM. Whereas, the ordinary hole doping is also occurred in LSMO thin films at x > 0. Thus, the carrier doping for LSMO thin films at x > 0 is caused by the hole self-doping by O2- ions and the ordinary hole doping by the replacement of La3+ ions by Sr2+ ones. To investigate the crystallographic and surface structures of the LSMO thin films, X-ray diffraction and SEM measurements have been performed, respectively. From the X-ray diffraction measurement, we have found that all LSMO thin films have perovskite structure and are polycrystalline. From the SEM measurement, we have seen that the LSMO thin films are formed of the aggregation of LSMO fine particles. Electrical resistivities (ERs) and magneto-resistivity (MR) ratios of the LSMO thin films have been measured on the temperature dependence (4K-300K). From MR ratio measurements, the coercive forces of them have been obtained as a function of temperature, and the Curie temperatures have been estimated from the temperature dependences of the coercive forces. We have discussed the origin of the magneto-conductive and magnetic properties of LSMO thin films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.