Abstract

The chiral organic-inorganic halide perovskites (OIHPs) are vital candidates for superior nonlinear optical (NLO) effects associated with circularly polarized (CP) light. NLO in chiral materials often couples with magnetic dipole (MD) transition, as well as the conventional electric dipole (ED) transition. However, the importance of MD transition in NLO process of chiral OIHPs has not yet been well recognized. Here, the circular polarized probe analysis of second harmonic generation circular dichroism (SHG-CD) provides the direct evidence that the contribution of MD leads to a large anisotropic response to CP lights in chiral OIHPs, (R-/S-MBACl)2PbI4. The thin films exhibit great sensitivity to CP lights over a wide wavelength range, and the g-value reaches up to 1.57 at the wavelength where the contribution of MD is maximized. Furthermore, it is also effective as CP light generator, outputting CP-SHG with maximum g-factor of 1.76 upon the stimulation of linearly polarized light. This study deepens the understanding of relation between chirality and magneto-optical effect, and such an efficient discrimination and generation of CP light signal is highly applicable for chirality-based sensor and optical communication devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call