Abstract
ABSTRACT The circumgalactic medium (CGM) is one of the frontiers of galaxy formation and intimately connected to the galaxy via accretion of gas on to the galaxy and gaseous outflows from the galaxy. Here, we analyse the magnetic field in the CGM of the Milky Way-like galaxies simulated as part of the auriga project that constitutes a set of high-resolution cosmological magnetohydrodynamical zoom simulations. We show that before z = 1 the CGM becomes magnetized via galactic outflows that transport magnetized gas from the disc into the halo. At this time, the magnetization of the CGM closely follows its metal enrichment. We then show that at low redshift an in situ turbulent dynamo that operates on a time-scale of Gigayears further amplifies the magnetic field in the CGM and saturates before z = 0. The magnetic field strength reaches a typical value of $0.1\, \mu \mathrm{ G}$ at the virial radius at z = 0 and becomes mostly uniform within the virial radius. Its Faraday rotation signal is in excellent agreement with recent observations. For most of its evolution, the magnetic field in the CGM is an unordered small-scale field. Only strong coherent outflows at low redshift are able to order the magnetic field in parts of the CGM that are directly displaced by these outflows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.