Abstract

Magnetized orbifolds play an important role in compactifications of string theories and higher-dimensional field theories to four dimensions. Magnetic flux leads to chiral fermions, it can be a source of supersymmetry breaking and it is an important ingredient of moduli stabilization. Flux quantization on orbifolds is subtle due to the orbifold singularities. Generically, Wilson line integrals around these singularities are non-trivial, which can be interpreted as localized flux. As a consequence, flux densities on orbifolds can take the same values as on tori. We determine the transition functions for the flux vector bundle on the orbifold T2∕Z2 and the related twisted boundary conditions of zero-mode wave functions. We also construct “untwisted” zero-mode functions that are obtained for singular vector fields related to the Green’s function on a torus, and we discuss the connection between zeros of the wave functions and localized flux. Twisted and untwisted zero-mode functions are related by a singular gauge transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.