Abstract

Using a global numerical model, we have studied how the present Martian magnetosphere may have looked in the past when the planet had a global intrinsic magnetic field. A Mars version (HYB-Mars) of the self-consistent quasi-neutral hybrid model was used which treats the ions as particles and the electrons as a massless charge-neutralizing fluid. We compare four cases where an intrinsic dipole magnetic field was 0 nT (the present situation), 10, 30, and 60 nT at the surface of Mars along the magnetic equator. We find that the 10 nT dipolar magnetic field already results in a magnetosphere which in many respects is more Earth-like than, a non-magnetized, “induced” magnetosphere. However, the 10 nT dipole magnetosphere is still relatively strongly connected to the interplanetary magnetic field, while the 30 nT dipole case, and especially the 60 nT dipole case, results in a magnetosphere whose morphology is determined predominantly by the Martian intrinsic magnetic field. A change of the magnetosphere due to a decreasing dipole magnetic field strength from 60 to 0 nT could have happened during the history of Mars when a globally magnetized Mars turned into the present, globally non-magnetized, planet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.