Abstract
Hypermassive neutron stars (HMNSs) are equilibrium configurations supported against collapse by rapid differential rotation and likely form as transient remnants of binary neutron star mergers. Though HMNSs are dynamically stable, secular effects such as viscosity or magnetic fields tend to bring HMNSs into uniform rotation and thus lead to collapse. We simulate the evolution of magnetized HMNSs in axisymmetry using codes which solve the Einstein-Maxwell-MHD system of equations. We find that magnetic braking and the magnetorotational instability (MRI) both contribute to the eventual collapse of HMNSs to rotating black holes surrounded by massive, hot accretion tori and collimated magnetic fields. Such hot tori radiate strongly in neutrinos, and the resulting neutrino-antineutrino annihilation could power short-hard GRBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.